根与解的区别是什么
一个根单指一个数,一个解可以是一个数,还可以叫做解集,是一个集合,此时解是一堆数。
方程的根是:定义在一元方程中的使方程左、右两边的值相等的未知数的取值。
方程的根与方程的解区别:在多元方程中只定义了方程的解,未定义方程的根。
在一元方程中方程的解可能会受到某些实际条件的限制,如:一道关于每天生产多少零件的应用题的函数符合x^2-10x-24=0 方程的根:x1=12,x2=-2, 虽然x=-2符合方程的根的条件,但由于,考虑到实际应用,零件生产不可能是负数,所以,此时x2=-2就不是这个方程的解了,只能说是方程的根。
补充: 所谓方程的解、方程的根都是使方程左、右两边的值相等的未知数的取值,而方程的根是特指一元方程的解。即对于只含有一个未知数的方程来说,方程的解,也叫方程的根。这里,根和解只是两种不同的称谓。
因此,一元一次方程的解与根是没有区别的。但对于多元方程来说,方程的解就不能说成是方程的根。这时解与根是有区别的。因为这样的方程是不存在根的概念的。
实数根与根有区别吗?举祥例说明
所谓方程的根是使方程左、右两边相等的未知数的取值。一元二次方程根和解不同,根可以是重根,而解一定是不同的,一元二次方程如果有2个不同根,又称有2个不同解。
所谓方程的解、方程的根都是使方程左、右两边相等的未知数的取值。
平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为〔√ ̄〕,其中属于非负实数的平方根称算术平方根。一个正数有两个平方根。
0只有一个平方根,就是0本身;负数没有平方根。 例:9的平方根是±3 注:有时我们说的平方根指算术平方根。
扩展资料
分类:
1、重根
在一元方程中方程的解可能会受到某些实际条件的限制,如:一道关于每天生产多少零件的应用题的函数符合x^2-10x-24=0 此方程的根:x=12,x2=-2。
虽然x=-2符合方程的根的条件,但由于考虑到实际应用,零件生产不可能是负数,所以,此时x2=-2就不是这个问题的解了,只能说是方程的根。
2、无根
一元高次方程的情况是一样的,如:方程x^3=1有1个实根和2个虚根,有时,方程根和解不作区别,方程无解又称无根。
3、增根
解分式方程、无理方程、对数方程时,需要化为整式方程,有时会产生增根,即使原方程无意义的未知数取值,此时该值便不是原方程的解。
4、不存在根
而对于多元方程来说,方程的解就不能说成是方程的根。这时解与根是有区别的。因为这样的方程是不存在根的概念的。
百度百科-根 (数学代数学中的术语)
有区别,数包括实数和虚数,所以,根也分实数根和虚数根.不知道虚数你有没有学过,就是在虚坐标系中表示的数,例如:1+2i,就是一个虚数,虚数没有大小,它的几何意义就是在虚坐标中一点,在虚坐标中.横轴为实轴,纵轴为虚轴,那么,1+2i就是点(1,2)
所以方程X^2+1=0是有根的,是虚数根,没有实数根.
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!