百科狗-知识改变命运!
--

如何区分酚,醇,醚,酯?

梵高11个月前 (12-02)阅读数 5#综合百科
文章标签羟基反应

1.组成的不同:

酚:酚,羟基(-OH)与芳烃核(苯环或稠苯环)直接相连形成的有机化合物。羟基直接和芳烃核(苯环或稠苯环)的sp2杂化碳原子相连的分子称为酚

这种结构与脂肪烯醇有相似之处,故也会发生互变异构,称为酚式结构互变。但是,酚的结构较为稳定,因为它能满足一个方向环的结构,故在互变异构平衡中苯酚是主要存在形式。

醇:醇,有机化合物的一大类,是脂肪烃、脂环烃或芳香烃侧链中的氢原子被羟基取代而成的化合物。一般所指的醇,羟基是与一个饱和的,sp3杂化的碳原子相连。

若羟基与苯环相连,则是酚;若羟基与sp2杂化的烯类碳相连,则是烯醇。酚与烯醇与一般的醇性质上有较大差异。

醚:醚是醇或酚的羟基中的氢被烃基取代的产物。通式为R-O-R',R和R’可以相同,也可以不同。相同者称为简单醚或者叫对称醚;不同者称为混合醚。

如果R、R'分别是一个有机基团两端的碳原子则称为环醚,如环氧乙烷等。多数醚在常温下为无色液体,有香味,沸点低,比水轻,性质稳定。醚类一般具有麻醉作用。如乙醚是临床常用的吸入麻醉剂。

2.物理性质的不同:

酚:大多数酚是无色针状结晶或白色结晶,少数烷基酚为高沸点液体;有特殊气味,遇空气和光变红,遇碱变色更快。

低级酚都有特殊的刺激性气味,尤其对眼睛、呼吸道粘膜、皮肤等有强烈的刺激和腐蚀作用,在使用时应注意安全保护措施。有的酚具有较强的杀菌能力、如医院中使用的消毒水--来苏儿,就是混合甲酚的水溶液。

酚虽然可以发生 C-O 键和O-H键断裂两类反应,但由于p-π共轭效应,C-O键非常牢固,不易断裂。但是,O-H 键是容易断裂的,因为生成的酚负离子中的负电荷可以离域分散而得以稳定。

酚上的苯环则由于上述共轭作用而比苯更容易进行亲电取代反应。

醇:醇类化合物受羟基的影响,存在分子间的氢键,在水中还有醇分子和水分子间的氢键。所以,它们的物理性质与相应的烃差异较大。

主要表现在熔沸点比较高,在水中有一定的溶解度等。一般而言,低级的醇类水溶性较好,甲醇、乙醇和丙醇能与水以任意比例混溶。

4~11个碳原子的醇为油状液体,部分溶于水,以后随着碳原子数增加,烃基对分子的影响越来越大,使高级醇的物理性质更接近于相应的烃。另外,低级的醇具有特殊的气味和辛辣的味道,而高级的醇则无嗅、无味。

醚:环状醚类比如四氢呋喃和1,4-二恶烷能与水混溶,这是因为这类醚分子的氧原子比起烷基醚(链状醚)来说更暴露于分子之外,所以极性比起后者更大。?

多数醚是易挥发、易燃的液体。与醇不同,醚分子之间不能形成氢键,所以沸点比同组分醇的沸点低得多,如乙醇的沸点为78.4℃,甲醚的沸点为-24.9℃;正丁醇的沸点为117.8℃,乙醚的沸点为34.6℃。

3.化学性质的不同:

酚:

弱酸性:

酸性比较:碳酸>苯酚>碳酸氢根>水。

酚比醇的酸性强,是由于酚式羟基的O-H键易断裂,生成的苯氧基负离子比较稳定,使苯酚的离解平衡趋向右侧,而表现弱酸性。酚式羟基的氢除能被金属取代外,还能与强碱溶液生成盐(如酚钠)和水。

若在苯酚钠的水溶液中通入二氧化碳,即有游离苯酚析出。这是因为苯酚酸性比碳酸弱,所以酚盐能被碳酸所分解。

由于酚的酸性弱于碳酸,所以酚只能溶于氢氧化钠而不溶于碳酸氢钠。实验室里常根据酚的这一特性,而与既溶于氢氧化钠又能溶于碳酸氢钠的羧酸相区别。此方法也可用于中草药中酚类成分与羧酸类成分的分离。

氧化反应:

酚类易被氧化,但产物复杂。纯苯酚系无色结晶,在空气中放置后,就能逐渐氧化变为粉红色、红色或暗红色。苯酚如用酸性重铬酸钾强烈氧化,则生成对苯醌。

取代反应:

酚羟基由于p-π共轭而难于被取代,但苯环上的氢原子可被取代,发生卤化、硝化和磺化等反应,并且羟基是邻、对位定位基,对苯环有活化作用,故酚比苯更容易进行亲电取代反应。

醇:

醇的酸性和碱性:

醇羟基的氧上有两对孤对电子,氧能利用孤对电子与质子结合。所以醇具有碱性。在醇羟基中,由于氧的电负性大于氢的电负性,因此氧和氢共用的电子对偏向于氧,氢表现出一定的活性,所以醇也具有酸性。

醇的酸性和碱性与和氧相连的烃基的电子效应相关,烃基的吸电子能力越强,醇的碱性越弱,酸性越强。相反,烃基的给电子能力越强,醇的碱性越强,酸性越弱。

烃基的空间位阻对醇的酸碱性也有影响,因此分析烃基的电子效应和空间位阻影响是十分重要的。

醇与含氧无机酸的反应:

醇与含氧无机酸反应失去一分子水,生成无机酸酯。

醇与硝酸的反应过程如下:醇分子作为亲核试剂进攻酸或其衍生物的带正电荷部分,氮氧双键打开,而后醇分子的氢氧键断裂,硝酸部分失去一分子水重新形成氮氧双键。

该类反应主要用于无机酸一级醇酯的制备。无机酸三级醇酯的制备不宜用此法,因为三级醇与无机酸反应时易发生消除反应。

醇与含氧无机酸的酰氯和酸酐反应,也能生成无机酸酯。

醇羟基的取代反应

醇中,碳氧键是极性共价键,由于氧的电负性大于碳,所以其共用电子对偏向于氧,当亲核试剂进攻正性碳时,碳氧键异裂,羟基被亲核试剂取代。其中最重要的一个亲核取代反应是羟基被卤原子取代。

醚:

自动氧化:

乙醚及其他的醚如果常与空气接触或经光照,可生成不易挥发的过氧化物(peroxide)。

多数自动氧化是通过自由基机理进行的。

过氧化醚是爆炸性极强的高聚物,蒸馏含有该化合物的醚时,过氧化醚残留在容器中,继续加热即会爆炸。

为了避免意外,在使用存放时间较长的乙醚或其他醚如四氢呋喃等之前应先进行检查,如果含有过氧化物,加入等体积的2%碘化钾醋酸溶液,会游离出碘,使淀粉溶液变紫色或蓝色。

三价硫酸铁和50%硫酸配制的硫酸亚铁溶液,约加入体积的1/5,并剧烈震荡,可破坏过氧化物。

形成钅羊盐:

醚由于氧原子上带有孤电子对,作为一个碱和浓硫酸、氯化氢或路易斯酸(如三氟化硼)等可形成二级钅羊盐。

乙醚能吸收相当量的盐酸气,形成钅羊盐,如果与有机碱如胺的乙醚溶液放在一起,即可析出胺的盐酸盐,这是制备胺盐的一个方法。

酸催化的开环反应:

开环反应按SN1或带有SN1特征的 SN2历程进行。酸性开环,开环方向:生成稳定碳正离子

乙硼烷与环氧化物开环反应也是酸催化开环,乙硼烷可以看作是甲硼烷的二聚体,硼外层6电子构型,可以与环氧化物中的氧络合,其作用与质子酸类似,因此硼烷中的负氢转移到取代基较多的环碳原子上。

碱性开环反应:

碱催化开环主要是试剂活泼,亲核能力强,环氧化合物上没有带正电荷或负电荷,这是一个SN2反应,C—O键的断裂与亲核试剂和环碳原子之间键的形成几乎同时进行,这时试剂选择进攻取代基较少的环碳原子,因为这个碳的空间位阻较小。

醇的性质是什么?

其分子通式为CnH2n+1 OH

alcohols

烃分子中一个或几个氢被羟基取代而生成的一类有机化合物。芳香烃的环上的氢被羟基取代而生成的化合物不属醇类而属酚类。

参考:http://bk.baidu.com/view/10062.htm

--------------

醛(aldehyde):有机化合物的一类,是醛基(-CHO)和烃基(或氢原子)连接而成的化合物。

结构

醛的通式为R-CHO,-CHO为醛基。

醛基是羰基(-CO-)和一个氢连接而成的基团。

参考:http://baike.baidu.com/view/111807.htm

-------------

醇和醛的区别就在于连接上去的是羟基(-OH)还是醛基(-CHO)

物理性质

状态

C1-C4是低级一元醇,是无色流动液体,比水轻,C1-C3能与水以任意比例混合。C5-C11为油状液体,C12以上高级一元醇是无色的蜡状固体,可以部分溶于水。甲醇、乙醇、丙醇都带有酒味,丁醇开始到十一醇有不愉快的气味,二元醇和多元醇都具有甜味,故乙二醇有时称为甘醇(Glycol)。 甲醇有毒,饮用10毫升就能使眼睛失明,再多用就有使人死亡的危险,故需注意。

沸点

醇的沸点比含同数碳原子的烷烃、卤代烷高。CH3CH2OH 78.5℃, CH3CH2Cl 12℃.这是因为液态时水分子和醇分子一样,在它们的分子间有缔合现象存在。由于氢键缔合的结果,使它具有较高的沸点。

在同系列中醇的沸点也是随着碳原子数的增加而有规律地上升。如直链饱和一元醇中,每增加一个碳原子,它的沸点大约升高15-20℃。此外在同数碳原子的一元饱和醇中,沸点也是随支链的增加而降低。在相同碳数的一元饱和醇中,伯醇的沸点最高,仲醇次之,叔醇最低。

溶解度

低级的醇能溶于水,分子量增加溶解度就降低。含有三个以下碳原子的一元醇,可以和水混溶。正丁醇在水中的溶解度就很低,只有8%,正戊醇就更小了,只有2%。高级醇和烷烃一样,几乎不溶于水。低级醇之所以能溶于水主要是由于它的分子中有和水分子相似的部分-羟基。醇和水分子之间能形成氢键。所以促使醇分子易溶于水。当醇的碳链增长时,羟基在整个分子中的影响减弱,在水中的溶解度也就降低,以至于不溶于水。相反的,当醇中的羟基增多时,分子中和水相似的部分增加,同时能和水分子形成氢键的部位也增加了,因此二元醇的水溶性要比一元醇大。甘油富有吸湿性,故纯甘油不能直接用来滋润皮肤,一定要掺一些水,不然它要从皮肤中吸取水分,使人感到刺痛。醇也能溶于强酸(H2SO4,HCl),这是由于它能和酸中质子结合成钅羊盐的缘故。正因为醇能和质子形成盐(Oxoninm salt,含有正氧离子oxonium的盐),故醇在强酸水溶液中溶解度要比在纯粹水中大。如正丁醇,它在水中溶解度只有8%,但是它能和浓盐酸混溶。醇能溶于浓硫酸,这个性质在有机分析上很重要,它常被用来区别醇和烷烃,因为后者不溶于强酸。

结晶

低级醇能和一些无机盐类(MgCl2,CaCl2,CuSO4等)形成结晶状的分子化合物,称为结晶醇。如:MgCl2.6CH3OH,CaCl2.4C2H5OH等。结晶醇不溶于有机溶剂而溶于水。利用这一 性质可使醇与其他有机物分开或从反应物中除去醇类。如:乙醚中的少量乙醇,加入 CaCl2便可除去少量乙醇。

化学性质

不稳定结构

①同一碳上连有多个羟基的化合物不稳定,这类物质通常是生成醛(酮)的中间反应

HO-CH2-OH——→HCHO+H2O

②双键后直连羟基的化合物不稳定

H2C=C(OH)CH3←——→H3CCOCH3

在特殊情况下,这些化合物可能存在[1]。

醇与金属反应(该反应为置换反应)

仪器的组装

醇与金属的反应是随着分子量的加大而变慢。

2R-OH+2Na——→2R-ONa+H2↑

反应现象

①钠块沉入容器底部

②钠块产生气泡

③反应结束后,有无色晶体析出(此为R-OH)

醇与HX卤代

反应活性

HI>HBr>HCl

叔醇>仲醇>伯醇

(CH3)3C-OH+HCl——→(CH3)3-Cl+H2O(立刻混浊)

CH3CH2(OH)CH3+HCl——→CH3CH2(Cl)CH3+H2O(10min内开始混浊)

CH3CH2CH2OH+HCl-△→CH3CH2CH2Cl+H2O(常温不反应)

由于伯醇、仲醇、叔醇反应时现象不同,可以用此方法进行鉴别,专门用于鉴别的试剂叫卢卡斯(Lucas)试剂,是无水氯化锌的浓盐酸溶液(无水氯化锌起催化作用)

醇的酯化与醇解反应

①与羧酸酯化

CH3OH+CH3COOH-△浓硫酸→CH3COOCH3+H2O

②与硝酸和亚硝酸酯化

CH3CH2CH2OH+HO-NO——→CH3CH2CH2ONO+H2O

③与硫酸酯化

醇与硫酸在不太高的温度下作用得到硫酸氢酯

RCH2OH+HO-SO3H——→RCH2OSO3H+H2O

叔醇和硫酸反应往往脱水生成烯烃

醇和硫酸的反应虽然产物比较复杂,但是在工业生产上依然是个很有用的反应

C12H25OH+H2SO4--→C12H25OSO3H+H2OC12H25OSO3H+NaOH--→C12H25OSO3Na+H2O

C12H25OSO3Na-减压→(CH3)2SO4+H2O

(CH3)2SO4为硫酸二甲酯,是常用的甲基化试剂。

醇的消去反应

脱水难易程度:叔醇>仲醇>伯醇

①分子内脱水

分子内脱水依照查依采夫规则,从氢原子数较少的β-碳上脱去氢原子

CH3CH2CH(OH)CH3-△浓硫酸→CH3CH=CHCH3

CH3CH2OH-170℃浓硫酸→CH2=CH2↑+H2O②分子间脱水浓硫酸做脱水剂,催化剂

醇分子间脱水生成醚

CH3OH+CH3OH-△浓硫酸→H3C-O-CH3↑+H2O(140°C时)③有的醇消去时会发生分子重排

(CH3)3CCH(OH)CH3-浓磷酸→(CH3)2C=C(CH3)2(80%产物)+H2C=C(CH(CH3)2)CH3(20%产物)某些醇不能发生消去反应

醇的氧化反应

①伯醇的氧化

伯醇氧化先生成醛,后生成羧酸

2CH3CH2OH+O2-Cu△→2CH3CHO+2H2O

2CH3CHO+O2-Cu△→2CH3COOH

②仲醇的氧化

仲醇氧化生成酮

2CH3CH(OH)CH3+O2-Cu△→2H3CCOCH3+2H2O

如何区分酚,醇,醚,酯?

③叔醇的氧化

叔醇一般不发生氧化反应,但叔醇和重铬酸钾的浓硫酸溶液混合时,会先脱水生成烯烃再被氧化,反应十分复杂[1]。

注:醇可被CuO\KMnO4(H+)\O2等氧化

多元醇的鉴别

多元醇能和Cu(OH)2发生显色反应,生成绛蓝色清亮透明溶液

醇的制取

工业制备低级醇,常用淀粉发酵法和乙烯水化法(详见乙醇、甲醇)

实验室常用卤代烃的碱性水解法

CH3CH2-Cl+NaOH-△→CH3CH2OH+NaCl

另外醛、酮、羧酸都可还原得到醇

CH3CHO+H2-Pt→CH3CH2OH

H3CCOCH3+H2-Pt→CH3CH(OH)CH3

CH3COOH-LiAlH4→CH3CH2OH

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)