常见的数学思想有哪些?
数学思想,是现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。那么常见的数学思想有哪些?
1、 符号化思想:在数学教学中,各种量的关系、量的变化以及在量与量之间进行推导和演算,都是以符号形式(包括字母、数字、图形与图表以及各种特定的符号)来表示,即运行着一套形式化的数学语言。
2、 分类思想:以比较为基础,按照事物间性质的异同,将相同性质的对象归入一类,不同性质的对象归入不同类别——这就是分类,也称划分。数学的分类思想体现对数学对象的分类及其分类标准。
3、 函数思想:函数概念深刻地反映了客观世界的运动变化与实际事物的量与量之间的依存关系。
4、 化归思想:“化归”就是转化和归结。在解决数学问题时,人们常常是将需要解决的问题,通过某种转化手段,归结为另一个相对比较容易解决的或者已经有解决程序的问题,以求得问题的解答。在小学数学中处处都体现出化归的思想,它是解决问题的一种最基本,最常用的思想方法。
5、 归纳思想:研究一般性问题时,先研究几个简单、个别的、特殊的情况,从中归纳出一般的规律和性质,这种从特殊到一般的思维方式被称为归纳思想。
6、 优化思想:“多中选优,择优而用”既是一种自然规律,又是一种好的思想方法。算法多样化是解决问题策略多样化的一种重要体现。计算长方形的周长是一题多解,求同存异,在对的方法中要选择最好的方法,弄清对的与好的,选择好的。
7、 数形结合思想:数学是研究现实世界的空间形式和数量关系的科学。数形结合的思想,就是把问题的数量关系和空间形式结合起来加以考察的思想。
关于常见的数学思想有哪些的内容就介绍到这了。
数学基本概念 、线性代数、多元微积分、 数学分析引论 、代数学(抽象代数基础)、数学分析基础、 数论基础(初等数论)、复变函数、常微分方程 、数值分析 、数学研讨 、矩阵及其应用 、概率论 、最大化设计引论 、金融中的微积分 、博弈论和策略 、数学专题研究 、抽象代数、泛函分析 、偏微分方程 、几何学 、微分流形、科学计算、运筹学、运筹学中的网络模型、数学实习
真正最后学什么,还是要看你的专业和学校课程安排,有些可能只是选修。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!