线性代数到底学什么
问题一:线性代数到底有什么用? 线性代数是一个很神奇的东西,线性代数方法是使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。这是数学与工程学中最主要的应用之一。其实,所有的高深数学究其根本都离不开线性代数甚至是矩阵。只是我们大学学的都很浅,只是作为了解而已,只有以后真正要搞研究的郸才会深入的学习。知识嘛,总是多了解一些的好,总不能大学毕业,基本的代数都不知道吧,对不?
希望答案楼主可以采纳!
问题二:大学线性代数都学习哪些内容? 总的来说分为6个部分 行列式,矩阵,向量,线性方程组,矩阵的特征值和特征向量,二次型 线性代数整体感很强,每一章之间联系紧密,相互交织的考点很多,很容易就可以出线代的综合题,但是线代又相对高数和概率论最简单的,因为他的概念虽然多,但是并不难,所以学的人很容易就能学的好,运用好,对于学习方法的话,我认为还是主要以对于概念的理解要到位,尤其对秩的概念与运用,线性方程求解和特征向量特征矩阵这三个方面重点关注,因为这三个考点很容易和相似,合同和二次型一起出大题,所以要注意。 总的来说线代还是不难的,希望我的答案对你有帮助!
问题三:经济学中的线性代数主要学什么 经济学中的线性代数主要学习行列式、叮阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
问题四:高等数学到底学什么高等数学和线性代数有什么区别 首先我把我个人感觉告诉你
1.高数比线代难
2.两者相互联系很小,不学高数,也能学会线代,也就是说随便学哪个,对另一个都没什么影响,学校开课是先学高数,但我觉得两者没什么共性
3.线代其实只要学过高中的行列式,入门是很快的,而高数要花的功夫就比较多了
以上是我个人感觉,我是针对大学开的课来说的
问题五:线性代数是什么样的数学!学了后平时用的到吗 线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量、向量空间(或称线性空间),线性变换和有限维的线性方程组。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数在数学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位。线性代数所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的。这是数学与工程学中最主要的应用之一。
视频资源:open.163/...u
问题六:怎么学线性代数,书完全看不懂啊 50分 首先谈一下我的看法:事实上线性代数应该是数学三门课中最好拿分的,但是这门课有一个特点,就是入门难,但是一旦入门就一通百通,这门课由于思维上与高数南辕北辙所以一上来会很不适应,总体而言6章内容环环相扣,所以很多同学一上来看第一章发现内容涉及到第五章,看到第二章发现竟有第4章的知识点,无法形成完整的知识网络,自然无法入门,总的来说这本书6章内容应该分为三个部分逐个攻破,首先行列式和矩阵,第二向量与方程组,第三第5和第六章,这三个内容联系得相当紧密,必须逐个攻破,这样以两章为单位,每个单位中出现的知识点定理罗列出来,找到他们彼此的关系,最好是拿一张白纸,像C语言中的指针那样一个一个连起来,形成属于你的知识网络,这一部分有哪些板块,每个板块有哪些定义知识点,比如行列式的定义,矩阵的定义各是什么,你是怎么理解的,向量与方程组有什么联系与区别,这些最基础的一定要搞清。不要一上来就看李永乐的视频,因为那个视频是强化阶段看的,建议听一下施光燕的线性代数12讲,这位老师讲的内容很基础,只有十二讲,但是全讲到重点上去了,这样你就会很容易入门了!
问题七:线性代数和高等数学先学哪个好 首先我把我个人感觉告诉你 一.高数比线代难 二.两者相互联系很小,不学高数,也能学会线代,也就是说随便学哪个,对另一个都没什么影响,学校开课是先学高数,但我觉得两者没什么共性 三.线代其实只要学过高中的行列式,入门是很快的,而高数要花的功夫就比较多了 以上是我个人感觉,我是针对大学开的课来说
问题八:线性代数有什么用?学习线性代数的意义在哪 线性代数在数学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位。在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分。线性代数所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的。随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。
线性代数的含义随数学的发展而不断扩大。线性代数的理论和方法已经渗透到数学的许多分支,同时也是理论物理和理论化学所不可缺少的代数基础知识。
“以直代曲”是人们处理很多数学问题时一个很自然的思想。很多实际问题的处理,最后往往归结为线性问题,它比较容易处理。因此,线性代数在工程技术和国民经济的许多领域都有着广泛的应用,是一门基本的和重要的学科。线性代数的计算方法是计算数学里一个很重要的内容。
高等数学、线性代数、概率与数理统计、几何学这些知识有什么作用?主要应用有哪些?
线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意 , 而且写了成千篇关于这两个课题的文章。向量的概念 , 从数学的观点来看不过是有序三元数组的一个集合 , 然而它以力或速度作为直接的物理意义 , 并且数学上用它能立刻写出 物理上所说的事情。向量用于梯度 , 散度 , 旋度就更有说服力。同样 , 行列式和矩阵如导数一样(虽然 dy/dx 在数学上不过是一个符号 , 表示包括△y/△x的极限的长式子 , 但导数本身是一个强有力的概念 , 能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。
线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。 行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在 1683 年写了一部叫做《解伏题之法》的著作,意思是 “ 解行列式问题的方法 ” ,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家, 微积分学奠基人之一 莱布 尼 兹 ( Leibnitz , 1693 年) 。 1750 年 克莱姆( Cramer ) 在他的《线性代数分析导言》( Introduction d l'analyse des lignes courbes alge'briques )中 发表了求解线性系统方程的重要基本公式(既人们熟悉的 Cramer 克莱姆法则)。 1764 年 , Bezout 把确定行列式每一项的符号的手续系统化了。对给定了含 n 个未知量的 n 个齐次线性方程 , Bezout 证明了系数行列式等于零是这方程组有非零解的条件。 Vandermonde 是第一个对行列式理论进行系统的阐述 ( 即把行列 ' 式理论与线性方程组求解相分离 ) 的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。 Laplace 在 1772 年的论文《对积分和世界体系的探讨》中 , 证明了 Vandermonde 的一些规则 , 并推广了他的展开行列式的方法 , 用 r 行中所含的子式和它们的余子式的集合来展开行列式,这个方法现在仍然以他的名字命名。 德国数学家雅可比( Jacobi )也于 1841 年总结并提出了行列式的系统理论。另一个研究行列式的是法国最伟大的数学家 柯西 (Cauchy) ,他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了 laplace 的展开定理。相对而言,最早利用矩阵概念的是 拉格朗日( Lagrange ) 在 1700 年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法。为了完成这些,他首先需要一阶偏导数为 0 ,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负的定义。尽管拉格朗日没有明确地提出利用矩阵。
高斯( Gauss ) 大约在 1800 年提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在几世纪中国人的手稿中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统。在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学。而高斯 - 约当消去法则最初是出现在由 Wilhelm Jordan 撰写的测地学手册中。许多人把著名的数学家 Camille Jordan 误认为是“高斯 - 约当”消去法中的约当。
高等数学、线性代数、概率与数理统计、几何学这些知识作用和主要应用:
高等数学,可以计算建筑结构受力,计算河坝,计算流体力学,计算电路等。
线性代数可以求解方程组,也可以做最优化设计等。
几何学可以用来搞建筑设计,齿轮设计,隐形战机设计,飞船设计等。
概率与数量统计可以用来协助买股票或**,当然也可以用来预测社会发展趋势或其他事物出现的概率等。
线性代数的知识较为独立,虽有几何意义,但是脱离了几何也可以学习,几何只是为了帮助理解,只要题目考的简单,完全可以直接学习线性代数。概率论牵扯到的知识较多,高中的排列组合公式需要掌握,还建议简单学习一元微积分和二重积分,做到简单的函数可以求导或积分即可。
线性代数
是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。
线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!