大学常用三角函数
三角函数公式是数学中属于初等函数中的超越函数的一类函数公式。它们的本质是任意角的集合与一个比值的集合的变量之间的映射,通常的三角函数是在平面直角坐标系中定义的。 三角函数公式包括和差角公式、和差化积公式、积化和差公式、倍角公式等。
记背诀窍:奇变偶不变,符号看象限[2].即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。
诱导公式口诀“奇变偶不变,符号看象限”意义:
k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;
(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
记忆方法一:奇变偶不变,符号看象限:
记忆方法二:无论α是多大的角,都将α看成锐角.
以诱导公式二为例:
若将α看成锐角(终边在第一象限),则π+α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二.
以诱导公式四为例:
若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四.
诱导公式的应用:
运用诱导公式转化三角函数的一般步骤:
特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。
数学计算公式有哪些?
导数:C'=0(C为常数函数)、(x^n)'=nx^(n-1)(n∈Q)、(sinx)'=cosx等。
高等数学公式是考研以及理工类研究的基础,也是重中之重,掌握这些公式能够帮助考生快速学习高等数学相关知识。
极限:设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x满足不等式0
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!