百科狗-知识改变命运!
--

简述在excel中排序筛选和分类总汇的区别

百变鹏仔1年前 (2023-12-02)阅读数 9#综合百科
文章标签数据性能

你好

排序

对一列或多列中的数据按文本(升序或降序)、数字(升序或降序)以及日期和时间(升序或降序)进行排序。还可以按自定义序列(如大、中和小)或格式(包括单元格颜色、字体颜色或图标集)进行排序。大多数排序操作都是针对列进行的,但是,也可以针对行进行。

简述在excel中排序筛选和分类总汇的区别

筛选:筛选过的数据仅显示那些满足指定条件 (条件:所指定的限制查询或筛选的结果集中包含哪些记录的条件。)的行,并隐藏那些不希望显示的行。筛选数据之后,对于筛选过的数据的子集,不需要重新排列或移动就可以复制、查找、编辑、设置格式、制作图表和打印。

可以按多个列进行筛选。筛选器是累加的,这意味着每个追加的筛选器都基于当前筛选器,从而进一步减少了数据的子集。

对于表来说,筛选和排序条件会随工作簿一起保存,因此,每次在打开工作簿时都可以重新应用筛选和排序。但是,对于单元格区域来说,只有筛选条件才随工作簿一起保存,而排序条件则不会随之保存。如果您希望保存排序条件,以便在打开工作簿时可以定期重新应用排序,那么最好使用表。对于多列排序或者需要很长时间才能创建的排序来说,这尤其重要。

望采纳

索引和排序有什么区别?

之前做过一年的spark研发,之前在阿里与腾讯也做了很久的hive,所以对这方面比较了解。

第一:其实快多少除了跟spark与hive本身的技术实现外,也跟机器性能,底层操作系统的参数优化息息相关,不能一概而论。

第二:hive 目前应该还是业界的主流,毕竟快与慢很多时候并非是至关重要的,对于一个生产系统来说,更重要的应该是稳定性,spark毕竟还算是比较新兴的事务,快确实快,但是稳定性上距离hive相差甚远。关于spark我们也修复了很多关于内存泄露的BUG,因为您问的是性能,所以不过多介绍(可以跟我要YDB编程指南,里面有我对这些BUG的修正)

第三:关于性能,我测试的可能不够全面,只能在排序与检索过滤上提供我之前的基于YDB的BLOCK sort测试报告供您参考(百度上贴word太费劲,您可以跟我要 word文档)。

排序可以说是很多日志系统的硬指标(如按照时间逆序排序),如果一个大数据系统不能进行排序,基本上是这个系统属于不可用状态,排序算得上是大数据系统的一个“刚需”,无论大数据采用的是hadoop,还是spark,还是impala,hive,总之排序是必不可少的,排序的性能测试也是必不可少的。

有着计算奥运会之称的Sort Benchmark全球排序每年都会举行一次,每年巨头都会在排序上进行巨大的投入,可见排序速度的高低有多么重要!但是对于大多数企业来说,动辄上亿的硬件投入,实在划不来、甚至远远超出了企业的项目预算。相比大数据领域的暴力排序有没有一种更廉价的实现方式?

在这里,我们为大家介绍一种新的廉价排序方法,我们称为blockSort。

500G的数据300亿条数据,只使用4台 16核,32G内存,千兆网卡的虚拟机即可实现 2~15秒的 排序 (可以全表排序,也可以与任意筛选条件筛选后排序)。

一、基本的思想是这样的,如下图所示:

1.将数据按照大小预先划分好,如划分成 大、中、小三个块(block)。

2.如果想找最大的数据,那么只需要在最大的那个块里去找就可以了。

3.这个快还是有层级结构的,如果每个块内的数据量很多,可以到下面的子快内进行继续查找,可以分多个层进行排序。

4.采用这种方法,一个亿万亿级别的数据(如long类型),最坏最坏的极端情况也就进行2048次文件seek就可以筛选到结果。

怎么样,原理是不是非常简单,这样数据量即使特别多,那么排序与查找的次数是固定的。

二、这个是我们之前基于spark做的性能测试,供大家参考

在排序上,YDB具有绝对优势,无论是全表,还是基于任意条件组合过滤,基本秒杀Spark任何格式。

测试结果(时间单位为秒)

三、当然除了排序上,我们的其他性能也是远远高于spark,这块大家也可以了解一下

1、与Spark txt在检索上的性能对比测试。

注释:备忘。下图的这块,其实没什么特别的,只不过由于YDB本身索引的特性,不想spark那样暴力,才会导致在扫描上的性能远高于spark,性能高百倍不足为奇。

下图为ydb相对于spark txt提升的倍数

2、这些是与 Parquet 格式对比(单位为秒)

3、与ORACLE性能对比

跟传统数据库的对比,已经没啥意义,Oracle不适合大数据,任意一个大数据工具都远超oracle 性能。

4.稽查布控场景性能测试

四、YDB是怎么样让spark加速的?

基于Hadoop分布式架构下的实时的、多维的、交互式的查询、统计、分析引擎,具有万亿数据规模下的秒级性能表现,并具备企业级的稳定可靠表现。

YDB是一个细粒度的索引,精确粒度的索引。数据即时导入,索引即时生成,通过索引高效定位到相关数据。YDB与Spark深度集成,Spark对YDB检索结果集直接分析计算,同样场景让Spark性能加快百倍。

五、哪些用户适合使用YDB?

1.传统关系型数据,已经无法容纳更多的数据,查询效率严重受到影响的用户。

2.目前在使用SOLR、ES做全文检索,觉得solr与ES提供的分析功能太少,无法完成复杂的业务逻辑,或者数据量变多后SOLR与ES变得不稳定,在掉片与均衡中不断恶性循环,不能自动恢复服务,运维人员需经常半夜起来重启集群的情况。

3.基于对海量数据的分析,但是苦于现有的离线计算平台的速度和响应时间无满足业务要求的用户。

4.需要对用户画像行为类数据做多维定向分析的用户。

5.需要对大量的UGC(User Generate Content)数据进行检索的用户。

6.当你需要在大数据集上面进行快速的,交互式的查询时。

7.当你需要进行数据分析,而不只是简单的键值对存储时。

8.当你想要分析实时产生的数据时。

ps:?说了一大堆,说白了最适合的还是踪迹分析因为数据量大,数据还要求实时,查询还要求快。这才是关键。

索引就是给你们家人编号,或者给你们家每个人一段简短的描述,然后方便别人很快从人群中识别你们家人,这是我对索引的理解。

排序嘛,比如说你们家里人的年龄吧,如果,爹50岁,娘48岁,你25岁,你妹20岁,你大姨妈40岁,你爷89岁,你奶85岁给你全家人按年龄从小到大排序会吗?这就是排序!索引嘛你还可以理解为这些数字前面的称谓,这下明白了?索引意思挺广的,多悟道吧!

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)