百科狗-知识改变命运!
--

2024年北京大学分子医学研究所的研究室介绍

乐乐5个月前 (06-22)阅读数 4#大学排名
文章标签北京大学

分子医学研究所非人灵长类动物研究中心主要利用灵长类及其他大动物建立代谢及心血管疾病模型,并开展疾病机理研究及新药临床前研究。

研究方向:

为实现“从分子到人”的转化医学研究,北京大学分子医学研究所自建所之初就建立了非人灵长类动物研究中心,主要通过自然筛选和手术造模等手段建立以猴、狗等大动物为主的代谢及心血管并发症模型,为疾病机理研究和新药临床前评估提供最接近人类的疾病模型。

通过几年的努力,我们已经成功建立了恒河猴代谢综合症(MS)、II型糖尿病(T2DM)、犬急性心肌梗死和犬快速起搏慢性心力衰竭等疾病模型,其中恒河猴代谢综合症模型为目前世界唯一一个有数年详细跟踪检测资料的模型。在此过程中,我们还首次在非人灵长类动物中建立了血流介导血管舒张(FMD)、心动超声二维斑点追踪、冠状动脉血流储备(CFR)及心脏造影等无创评估心血管功能的方法。此外,我们也是全世界为数不多的几个能通过手术在动物心脏安置十多个血流、压力及位移探头,并在术后清醒动物中实时监测记录各种参数的单位之一。

利用灵长类动物疾病模型,我们同时从蛋白、RNA、DNA等不同水平,深入地研究代谢综合症及其心血管并发症的发病机制,为这些基本的治疗提供新靶点、新手段,为早期诊断治疗提供新生物标志物。

作为新药临床前评估的最佳模型,我们的大动物疾病模型也充分发挥了作用。目前,我们已为通过合作研究对多个新药进行了临床前评估,其中部分已进入临床试验阶段。临床前研究的结果得到知名制药公司专家的充分肯定。 钙信号转导研究室主要研究细胞ROS信号和钙信号转导的普遍规律和生理调节,以及某些病理条件下信号失调的细胞与分子机制,内容涵盖单分子、亚细胞器、细胞、整体水平钙及ROS信号动力学,在体分子成像以及生物信号系统复杂性研究。

主要研究方向:

线粒体生物医学: 以分子生物学、遗传学、生理学、生物物理学研究方法,从分子、细胞、组织、以及整体水平,1)研究线粒体ROS信号及钙信号调控;2)探讨线粒体形态改变(融合/分裂)机制及其病理生理意义;3)结合基因组及蛋白质组学研究手段,筛选线粒体钙离子通道及膜转运孔道相关蛋白,研究其对线粒体形态和功能的影响,并寻找针对线粒体疾病治疗的可能药物靶点。

活性氧信号系统生物学:利用生物物理学、系统生物学、分子生物学以及生理和病理学等手段,从线粒体ROS信号产生的分子机理、生理及病理情况下ROS信号调节、以及可能的抗氧化剂治疗等方面,全面系统地研究ROS信号产生和调控机制及其病理生理意义。包括:1)超氧炫产生的分子机制及调节因子;2)线粒体超氧炫的基础生理和病理功能;3)超氧炫和重大疾病的关系;4)从线粒体蛋白质组中筛选线粒体功能调节的新靶点;5)新的活性氧探针和新的检测方法的研究开发。 人类群体遗传学研究室的研究方向:心血管疾病是威胁人类生命的第一杀手。常见的心血管疾病如高血压、冠心病、心律失常、高脂血症等由遗传与环境因素共同作用所致。寻找和鉴定心血管疾病的易感 基因以及研究易感基因和环境因素相互作用在心血管疾病发生中的作用及其机制,是心血管疾病的早期预警、干预、治疗以及新药物靶点发现的前提。研究手段主要包括:1)用细胞遗传学的方法寻找中国人群染色体的异常和遗传病的关系;2)通过以受累家系为基础的连锁分析或候选基因法寻找与家系相关的致病 基因;3)通过以群体为基础的关联分析寻找遗传病易感基因或染色体易感位点;4)建立转基因动物模型及基因敲除小鼠模型以研究基因改变对疾病发病的影响。 此外,我们还将用比较基因组学的方法,对在心脏发育中起主要作用的基因的启动子区进行跨种系比较,最后分离出在进化中高度保守区的结合蛋白,绘出心脏发育 中的信号通路。这些信号分子的遗传突变是先天性心脏病的主要基础。绘制心脏发育的信号通路是了解先天性心脏病发病机制的重要手段和方法。

人类群体遗传室自2006年成立以来,已建立拥有数万份血样DNA的遗传资源库。该资源库包括高血压、冠心病、心律失常、高脂血症、马凡综合征、糖尿病等散发人群、高龄老人人群和家系的DNA样品及其相应的临床数据资料。

目前研究室已建立遗传分型技术平台:

ABI3130XL测序仪:用于DNA测序和基于片段长度不同的基因分型。

Affymetrix TG高通量杂交仪:全基因组SNP扫描、全基因组表达图谱分析、CGH以及启动子分析等。 细胞生物物理研究室主要研究细胞分泌发生机理,细胞分泌和内吞的动力学,细胞离子通道、受体和动作电位,以及细胞分泌对神经、内分泌、心血管系统功能的贡献。我们使用膜片钳、细胞膜电容、电化学微碳纤电极、细胞内[Ca2+]i 荧光测量、共聚焦荧光FM成 像、光裂解细胞内钙离子络合物等先进生物物理技术,在单个细胞,新鲜组织薄片、或活体动物上进行电生理、电化学实时记录。我们擅长于改进已有的微电子、光 学、机械仪器技术和分析理论,设计新的方法(装置和理论),通过与国内外生物医学专家开展优势互补的互利合作,来发现重要生物医学问题的答案。

目前课题组 主要集中在以下四个方向:

(1)在单个细胞上研究离子通道,动作电位和量子化分泌的关系:

细胞在静息状态下,细胞膜是极化的,在受刺激的情况下细胞膜离子通道发生改变,即细胞膜的通透性发生改变,产生动作电位。我们用四个参数编码同一组动作电位,发现分泌受动作电位编码的调控。 这提供了是动作电位编码的信息的生物学基础。

在大鼠肾上腺嗜铬细胞在胞吞/胞吐过程中分泌孔道的机制研究中,我们发现ATP可以通过两种途径来抑制细胞的分泌:50%通过钙离子通道、50%通过分泌小孔。ATP会减少分泌小孔的开放时间,并用“kiss and run”的方式来进行胞吐。另外,我们还在胶质细胞上研究分泌小孔与电压依赖性量子化分泌的关系。

离子通道做为产生动作电位的基础,也是我们 研究室研究的对象,其中钠离子通道(失活)、钙离子依赖的钾离子通道(BK、SK)以及HCN(pacemaker)通道是我们研究的重点。2004年我们发现HCN通道做为可以产生有节律的动作电位的离子通道,不仅允许钠离子、钾离子通过,而且可以让钙离子通过,产生的电流中有0.5%是由钙离子贡献的。

在DRG神经元胞体上的胞吞和胞吐。2002年,我们发现该神经元胞体上存在对Ca2+不敏感但对电压敏感的分泌信号(CIVDS)。2004年又发现由CIVDS诱导的快速胞吞(CIVDS-RE)。这些工作成为传统的Katz钙离子分泌假说的第一个证据确凿的反例。

(2)在大脑(或其它器官)薄片上研究“刺激-分泌-偶联”:

以上所述均以单各分离细胞为研究对象,我们知道培养的单细胞已经离开了它原来的生理环境,其生理表现也非正常。所以我们将课题引向了大脑(或其它器官)薄片,应用我们发展的新型微碳纤维电极,我们正在在蓝斑(LC)、海马、肾上腺等薄片上记录细胞电信号和化学分泌信号, 这时被记录的细胞仍然和其它细胞保持着联系。

(3)在活体动物大脑(或其它器官)上研究“刺激-分泌-偶联”:

组织薄片中的细胞虽然比培养的单细胞要“生理”,但它与活体内细胞相比,仍然存在很大的区别,去除不了“生理条件下或许不一样”这一疑问。所以,我们又进一步将课题引向了活体大脑(或其它器官)记录。应用我们发展的新型微碳纤维电极,我们正在哺乳类动物大脑的文状体和海马等细胞电信号和神经递质分泌的电化学信号。

(4)在心血管系统的细胞、组织和活体器官上研究神经“刺激-分泌-偶联”:

植物神经系统(交感、副交感)对心血管系统具有重要的调控(兴奋、抑制),这是动物(包括人)对环境作应急反应的必要环节。另一方面,心血管系统通过渗入到 中枢和外周神经系统内的血管、血液和氧气控制神经的正常活动。应用我们发展的新型微碳纤维电极,我们正在哺乳类动物的心血管系统的细胞、组织和活体器官上 研究电或缺氧对外周神经“刺激-分泌-偶联”的细胞电信号和神经递质分泌的电化学信号。 细胞分泌与代谢研究室将致力于发展先进的成像技术和分析手段,并结合传统的电生理手段和分子生物学的方法,从分子、细胞到器官水平阐明代谢相关疾病发生过程中胰岛素分泌的时空变化以及这些变化与疾病发生和发展的关系。

主要研究方向:

细胞分泌与代谢研究室将建设国际领先的四色全内反射荧光成像平台,检测胰岛素分泌过程。然后系统地探索和建立算法平台,提取和分析胰岛素分泌过程中(海量荧光图像中)的空间、时间特性。通过软硬件结合,研究室将实现单个蛋白分子(纳米级)、蛋白复合体的超分辨率结构(~10纳米级)、如囊泡一类的细胞器(~100纳米级)、单个细胞(~10微米)和整个胰岛水平(~毫米)的纳米显微成像。应用上述发展的技术,细胞分泌与代谢研究室将在各个水平上快速、定量和高通量的检测小鼠、大鼠以及灵长类动物等不同动物胰腺胰岛素分泌的各项特征,并将这些技术应用于发病过程中胰岛素分泌特性变化的研究中,揭示胰岛素释放的变化与糖尿病发病之间的关系。另外,开发的高通量胰岛素检测的分析平台,还将为后期相关的药物筛选提供手段。 我们的研究方向集中在利用哺乳动物细胞培养、斑马鱼及小鼠模型探讨心脑血管发育及疾病发生的机理。我们的总目标是利用分子遗传学等手段发现心脏及血管的干细胞形成及分化的分子机理。这些研究将提示新的治疗靶点以及可能为我们带来新的细胞、基因及小分子的治疗手段。

血管干细胞及发育

2024年北京大学分子医学研究所的研究室介绍

一个世纪前即提出hemangioblast是内皮细胞及造血细胞的干细胞的概念,目前在小鼠胚胎干细胞分化成的embryoid bodies及斑马鱼胚胎中发现hemangioblast。但是目前关于hemangioblast如何从 brachyury+ 中胚层细胞分化而来以及决定hemangioblast的特异性的分子基础并不清楚。我们最近从斑马鱼克隆了一个新的lycat并克隆了他的大鼠同源基因Lycat。Lycat对于斑马鱼及embryoid bodies中血管及血液的发生是必须的。我们正在进行的研究包括通过小鼠干细胞培养、lycat敲除及转基因斑马鱼和小鼠研究lycat及下游基因在hemangioblast发育中的功能。我们通过定位克隆研究几种新血管突变体在血管发育及成熟中的作用。

心脏和血管发育、再生及心脑血管病

斑马鱼等模式生物对于研究心脏形态发生及发育的遗传通路起了重要的作用。斑马鱼还有出奇的心脏再生能力。但目前对于心脏发育和再生的遗传和表观遗传学基础仍还很不清楚。我们利用斑马鱼的多种突变体如没有心内膜的cloche, 心脏功能异常的fl02k 和scotch tape等作为突破口,研究心内膜前体细胞和心内膜-心肌间的信号传递在心脏的形态发生及功能中的作用。研究心内膜前体细胞如何形成,cloche和lycat如何影响中胚层的细胞形成心内膜前体细胞;研究 Integrin等通路在心肌细胞中如何起到机械张力感受分子的作用,研究Integrin,Scotch tape和Rad 信号通路在心脑血管发育和疾病发生中的作用,以及探索参与斑马鱼心脏再生的分子机理。 细胞信号转导研究室主要从事以下几方面的研究:

(1)beta-肾上腺素能受体亚型在心血管系统的信号转导;

(2)心血管疾病相关基因的探索研究;

(3)心肌细胞凋亡、肥大与再生;

(4)动脉粥样硬化的信号通路。 血管生物学研究室主要研究血管细胞的重要生理功能(细胞增殖、分泌及存活等),与重大心脑血管疾病相关的病理改变及其分子机制。研究方法和手段包括原代培养细胞、离体血管条及基因敲除小鼠等。

研究方向:1. 血管内皮细胞、平滑肌细胞的信号转导。研究主要各种生物活性因子(特别是生长因子)、机械力学刺激(如牵张力、切力)等诱导的血管细胞的生物学反应(如增殖、分泌等),及其胞内信号转导途径。目前重点研究信号分子Gab、Shp2、PLCgamma1 等介导的信号通路及其在生物学功能中的作用。希望通过本项研究,揭示内皮、平滑肌细胞生理功能和病理改变的分子机制,为心脑血管相关疾病的防治找到新的靶点。

2. 肿瘤相关的血管新生以及血管内皮细胞肿瘤形成的分子机制。使用细胞生物学,基因过表达及基因沉默等多种手法,结合运用转基因小鼠和人类血管瘤标本,研究肿瘤相关的血管新生,血管肿瘤形成及消退的信号调控机制。希望通过本项研究,揭示肿瘤相关的血管新生及血管肿瘤形成的分子机制,为肿瘤的防治找到新的靶点。

3. 内皮细胞损伤相关的脂质代谢紊乱(常见于肥胖症)及胰岛素抵抗(常见于糖尿病)的细胞分子机制。脂质代谢紊乱(常见于肥胖症)及胰岛素抵抗与内皮细胞损伤密切相关。目前重点围绕与脂质代谢紊乱(常见于肥胖症)及胰岛素抵抗有关的关键分子Lipin的研究。希望通过本研究,不仅能够促进相关病理生理改变分子机制的理解,而且能够为相关疾病的防治找到新的靶点。

是一件很有意义的工作。

北京大学有机化学研究所、北大-清华生命科学联合中心罗佗平研究员拟在化学生物学和有机合成化学的多个前沿交叉领域开展工作,具体研究领域请参见课题组主页。研究方向如下:

1)有重要生物活性小分子的作用机理和相应生物学研究;

2)利用“bump-and-hole”策略构建等位基因特异性的蛋白分子,进行相应蛋白功能研究。

罗佗平主要成就

1)运用“bump-hole”策略通过操控蛋白/小分子探针的结合位点来建立研究特定的酶作用和功能的实验体系。

2)开发新型的生物正交反应。

3)制备原位激活的探针分子用于研究特定的激酶或G蛋白偶联受体。

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)