数学中,群、环、域、集分别是什么?它们的范围不同吗?
这是抽象代数的内容:
集合是基本概念,相当于一类/一堆/全体/...你该理解,不说了。
群是特殊的集,在它上面可以定义一种运算(通常叫做“乘法”,但跟数的乘法无必然联系),要封闭/可结合/有单位元(类似乘1/加0)/有逆元(类似乘倒数/加相反数)...
例如,正有理数是乘法群,非零有理数也是乘法群,整数集在加法下成群。
注意,群不要求交换律,如果满足交换律,叫阿贝尔群(或加法群)。
环和域的要求就更高了,不必给你讲抽象的,只在数的范围内讨论:
在加/减/乘下封闭的数集是数环,如果数环在除法下也封闭,就叫数域。
某数的倍数全体(包括负的)成一数环,有理数集是最小的数域,实数集/复数集也是数域。
更深的内容参见大学课本,抽象代数/近世代数之类......
数学组成是什么意思
数学结构
数学结构(mathematical
structure)亦称关系结构,简称结构.现代数学的一个基本概念.各种数学对象的统称.它是对于各种数学对象,例如,有序集、线性空间、群、环、拓扑空间、流形等,用集合和关系的语言给出的统一形式.结构由若干集合,定义在集合上或集合间的一些关系,以及一组作为条件的公理组成.随着数学的发展,不断出现许多新的数学分支,这些分支有其各自的研究对象,独特的方法,独自的语言.另一方面,数学不同领域的方法和思想的互相渗透,建立了现代数学的共同逻辑基础(数理逻辑)、共同的基本概念(集合)和共同的方法(公理化方法).法国布尔巴基学派采用全局观点,着重分析各个数学分支之间的结构差异和内在联系,他们认为数学的基本结构有三种,称为母结构:
1.代数结构.由集合及其上的运算组成,如群、环、域、线性空间等.
2.序结构.由集合及其上的序关系组成,如偏序集、全序集、良序集.
3.拓扑结构.由集合及其上的拓扑组成,如拓扑空间、度量空间、紧致集、列紧空间等.
通过以上三种母结构的变化、复合、交叉形成各种数学分支.
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!