AI,机器学习和深度学习的区别到底是什么
1. 深度学习与AI。本质上来讲,人工智能相比深度学习是更宽泛的概念。人工智能现阶段分为弱人工智能和强人工智能,实际上当下科技能实现的所谓“人工智能”都是弱AI,奥创那种才是强AI(甚至是boss级的)。而深度学习,是AI中的一种技术或思想,曾被MIT技术评论列为2013年十大突破性技术(Deep Learning居首)。或者换句话说,深度学习这种技术(我更喜欢称其为一种思想,即end-to-end)说不定就是实现未来强AI的突破口。
2. 深度学习与ML。DL与ML两者其实有着某种微妙的关系。在DL还没有火起来的时候,它是以ML中的神经网略学习算法存在的,随着计算资源和big data的兴起,神经网络摇身一变成了如今的DL。学界对DL一般有两种看法,一种是将其视作feature extractor,仅仅用起提取powerful feature;而另一种则希望将其发展成一个新的学习分支,也就是我上面说的end-to-end的“深度学习的思想”。
机器学习与深度学习有什么不同
深度学习和机器学习的区别如下:
1、数据量
机器学习能够适应各种数据量,特别是数据量较小的场景。在另一方面,如果数据量迅速增加,那么深度学习的效果将更为突出。下图展示了不同数据量下机器学习与深度学习的效能水平。
2、硬件依赖性
与传统机器学习算法相反,深度学习算法在设计上高度依赖于高端设备。深度学习算法需要执行大量矩阵乘法运算,因此需要充足的硬件资源作为支持。
3、特征工程
特征工程是将特定领域知识放入指定特征的过程,旨在减少数据复杂性水平并生成可用于学习算法的模式。
4、问题解决方法
传统机器学习算法遵循标准程序以解决问题。它将问题拆分成数个部分,对其进行分别解决,而后再将结果结合起来以获得所需的答案。深度学习则以集中方式解决问题,而无需进行问题拆分。
5、执行时间
执行时间是指训练算法所需要的时间量。深度学习需要大量时间进行训练,因为其中包含更多参数,因此训练的时间投入也更为可观。相对而言,机器学习算法的执行时间则相对较短。
6、可解释性
可解释性是机器学习与深度学习算法间的主要区别之一——深度学习算法往往不具备可解释性。也正因为如此,业界在使用深度学习之前总会再三考量。
机器学习和深度学习之间的 5 个主要区别:
1. 人为干预
对于机器学习系统,人类需要根据数据类型(例如,像素值、形状、方向)识别并手动编码应用特征,而深度学习系统则试图在没有额外人工干预的情况下学习这些特征。以面部识别程序为例。此程序首先会学习检测识别人脸的边缘和线条,然后是人脸的更重要部分,最后是人脸的整体样貌。这样做会涉及到大量数据,随着时间的推移和程序自我训练,正确答案(即准确识别面部)的概率会逐渐增加。这种训练是通过使用神经网络进行的,类似于人脑的工作方式,不需要人类重新编程。
2. 硬件
由于要处理的数据量和所用算法中涉及的数学计算的复杂性不同,深度学习系统需要比简单的机器学习系统更强大的硬件。用于深度学习的一种硬件是图形处理单元 (GPU)。机器学习程序可以在没有那么多计算能力的低端机器上运行。
3. 时间
正如我们所了解的,由于深度学习系统需要庞大的数据集,而且它涉及的参数和数学公式非常之多,因此深度学习系统会需要大量训练时间。机器学习可能需要几秒钟到几个小时,而深度学习可能需要几个小时到几周的时间!
4. 方法
机器学习中使用的算法倾向于对不同部分进行数据解析,然后将这些部分组合起来从而得出结果或解决方案。深度学习系统一次解决整个问题。例如,你想用一个程序来识别图像中的特定对象(它们是什么以及它们所在的位置——例如停车场汽车上的车牌),你必须通过机器学习完成两个步骤:首先是物体检测,然后是物体识别。而使用深度学习程序,你只需要输入图像,通过训练,程序将在一个结果中返回识别的对象及其在图像中的位置。
5. 应用
通过上述差异,你可能已经意识到机器学习和深度学习系统会用于不同的应用程序。使用地点:基本的机器学习应用程序包括预测程序(例如预测股票市场的价格或下一次飓风袭击的时间和地点)、垃圾邮件标识符以及为医疗患者设计循证治疗计划的程序。除了上面提到的 Netflix、音乐流媒体服务和面部识别的例子之外,深度学习另一个广为人知的应用领域便是自动驾驶汽车——该程序使用多层神经网络来做一些事情,比如确定要避开的物体、识别交通灯并知道何时加速或减速。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!