百科狗-知识改变命运!
--

幂级数的理论意义和实际意义是什么啊,

梵高1年前 (2023-12-03)阅读数 9#综合百科
文章标签函数定义域

幂级数的有关概念

定义6 具有下列形式的函数项级数 (1)称为幂级数.幂级数

特别地,在中令即上述形式化为 (2)称为 的幂级数.取为常数项级数,如收敛,其和为 取为常数项级数,如收敛,其和为 取为和函数项级数,总收敛,其和为 对幂级数主要讨论两个问题:(1)幂级数的收敛域 (2)将函数表示成幂级数.幂级数的收敛域具有特别的结构 定理1:(i)如 在 收敛,则对于满足 的一切 ,都绝对收敛; (ii)如 在 发散,则对于满足 的一切 ,发散.证:(1)∵ 收敛 ∴ (收敛数列必有界) 而 为几何级数,当 即收 ∴ 收 ∴ 原级数绝对收敛 (2)反证:如存在一点 使 收 则由(1) 收,矛盾.由证明可知幂级数的收敛域为数轴上的对称区间,因此存在非负数R,使 收敛; 发散,称R为收敛半径,(-R,R)为收敛区间.

幂级数的理论意义和实际意义是什么啊,

幂级数的性质

定理 求幂级数的和函数:利用逐项求导,逐次积分及四则运算等于将其化为可求和的形式

 形如y=x^a(a为常数)的函数,即以底数为自变量 幂为因变量,指数为常量的函数称为幂函数。 定义域和值域:  当a为不同的数值时,幂函数的定义域的不同情况如下: 如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。 当x为不同的数值时,幂函数的值域的不同情况如下: 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域 性质:  对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:  首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;  排除了为0这种可能,即对于x0的所有实数,q不能是偶数;  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。  总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:  如果a为任意实数,则函数的定义域为大于0的所有实数;  如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。  在x大于0时,函数的值域总是大于0的实数。  在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。  而只有a为正数,0才进入函数的值域。  由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.  可以看到:  (1)所有的图形都通过(1,1)这点。  (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。  (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。  (4)当a小于0时,a越小,图形倾斜程度越大。  (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。  (6)显然幂函数无界。

鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com

免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)