什么叫特解(微分方程)
通解中含有任意常数,而特解是指含有特定常数。
比如y=4x^2就是xy'=8x^2的特解,但是y=4x^2+C就是xy'=8x^2的通解,其中C为任意常数。
:微分方程指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。
求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。
参考链接:百度百科_微分方程
微分方程的通解和特解是什么?
通解的定义是:对于n阶微分方程,它的含有n个独立常数的解。
事实上,这个定义并没有说通解是所有解。并且就实际结果而言,通解并不一定等于全部解。简单举例,分母为0求得的特解,就不一定在通解里。
例:y*y+x*x*dy/dx=x*y*dy/dx ,通解为 ln(Cy) = y/x。而明显可以找到一个特解 y = 0 是不包含在通解里的。(解题过程直接搜索能查到)
个人以为,通解是用一个式子表示了一个全部解的子集。并且规定了常数的数量,这意味着要求这个子集尽可能大。所以一个通解的子集(如一些常数确定或设某些常数为0)不能被视为通解。
通解中含有任意常数,而特解是指含有特定常数。比如y=4x^2就是xy'=8x^2的特解,但是y=4x^2+C就是xy'=8x^2的通解,其中C为任意常数。
求微分方程通解的方法有很多种,如:特征线法,分离变量法及特殊函数法等等。而对于非齐次方程而言,任一个非齐次方程的特解加上一个齐次方程的通解,就可以得到非齐次方程的通解。
微分方程的作用
1、微分方程,是高等数学中最为重要的一个分支领域,只要在等式中含有未知量的导数与变量之间关系的方程,都可以称之为微分方程。
2、我们使用微分方程可以将一个复杂的个体分割成无限个微小部分,在利用微分方程对一个一个的小部分利用边界条件对其进行求解,最后求解整个部分的解。
3、微分方程,现在广泛应用在计算机仿真、电子电路计算、航空航天等多个领域。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!