从生理学角度来讨论发酵和同化的概念有什么异同?
(1)发酵: 发酵又称无氧代谢,酵母菌或细菌无氧时分解糖类为CO2和乙醇,同时获取能量,利用此反应所设计的实验称为发酵试验,以此判断真菌或细菌某种酶的存在而区别真菌,如:白色念珠菌发酵葡萄糖,隐球菌不发酵葡萄糖.
(2)同化: 同化又称有氧呼吸,有氧条件下,真菌分解为CO2和水,同时获取能量,利用此反应所设计的实验称为同化试验,以此判断真菌某种酶的存在而区别真菌,如:热带念珠菌同化麦芽糖,而光滑球拟酵母菌不能同化麦芽糖.真菌能同化某种糖不一定能发酵某种糖,能发酵某种糖必定能同化某种糖.
西索米星(Sisomicin,SISO)是一种重要的含有双键的水溶性、多元弱碱性氨基糖苷类抗生素,属庆大霉素-西索米星型的假三糖庆大霉胺类抗生素,为抗生素JI-20A的脱羟基化衍生物西索米星还是合成药物奈替米星(Netilmicin,NET)和新型化合物氢化西索米星(即5′-差向庆大霉素C1a)的生产原料,中国生产的西索米星约占世界产量的80%目前,在西索米星发酵工艺优化和过程控制方面的研究明显滞后。实现发酵过程优化和控制是发酵工程的重要目标和研究热点,建立数学模型则是实现发酵过程优化控制的前提和关键。
国内外对核苷酸、氨基酸和青霉素等微生物代谢产物的发酵过程动力学研究有很多的报道,但对于西索米星发酵的动力学特性研究及其发酵过程的优化控制未见相关报道。
本研究在对西索米星分批发酵的动力学特性研究基础上,进一步定量地探索西索米星分批发酵过程中菌体生长、底物消耗、产物合成的相互影响和动态平衡规律,建立发酵动力学模型,用以指导西索米星分批发酵过程的模拟、预测和过程优化控制。
材料与方法 斜面培养:可溶性淀粉,硝酸钾,氯化钠,麸皮,碳酸钙,琼脂,硫酸镁,天门冬氨酸,磷酸氢二钾,消前pH 7.0,接种后于37℃培养8~10 d,新鲜斜面冷藏(-4℃)3~7 d后备用。
种子培养:玉米淀粉,黄豆饼粉,蛋白胨,酵母粉,硫酸镁,碳酸钙,消前pH 7.0,接种后35℃,24r/min培养48 h后移种。
摇瓶发酵培养:玉米淀粉,黄豆饼粉,麦芽糖,玉米浆,硫酸镁,氯化铵,磷酸氢二钾,碳酸钙,蛋氨酸和氯化钴;控制消后pH 7.0~7.2,接种量10%,34℃,240 r/min摇瓶发酵36 h后变温为32℃摇瓶发酵至96 h结束,装量50mL/500mL三角瓶。5 L贝朗罐发酵培养及30m3工业罐发酵生产:培养基同摇瓶配方,接种量10.0%~12.5%,控制消后pH 7.0~7.2,溶氧浓度DO≥8.5%(以纯氧计,通过改变通气量和搅拌转速进行分阶段控制),34℃发酵36 h后变温为32℃发酵,当菌体生长到一定的状态时开始流加补料,发酵周期约92~96 h。 西索米星(P)测定采用HPLC法、菌体(X)浓度测定采用洗涤细胞干重法、总糖(St)浓度和还原糖(S)浓度测定采用斐林-碘量法、葡萄糖(G)测定采用糖氧化酶法血糖试剂盒、麦芽糖(M)测定和淀粉水解酶表观活性(E)测定采用高效液相色谱法。
白细胞 在文献西索米星分批发酵的动力学特性研究中已经发现,西索米星分批发酵过程存在明显的产物抑制效应;以淀粉为主要碳源进行西索米星分批发酵时,菌体摄取和利用的糖类底物主要是麦芽糖,发酵后期发酵液中淀粉水解酶酶活不足和可发酵糖浓度迅速下降,将影响西索米星的产物合成;菌体生长的最适葡萄糖和麦芽糖浓度分别为7.5~15.0和10.0~25.0 g/L,西索米星产物合成的较适宜麦芽糖浓度为10.0~15.0 g/L。初始淀粉浓度为65.0 g/L时,典型的西索米星工业分批发酵过程的微生物代谢特性规律西索米星分批发酵是典型的次级代谢产物合成过程,产物的合成与菌体的生长无明显相关,接种后7~25 h是菌体对数生长期,25~37 h为过渡期,在过渡期菌体继续生长,并开始合成产物,37~85 h为产物合成期,85 h后菌体活性衰退。本研究对不同发酵时期分阶段建立符合该时期微生物代谢特性的发酵动力学模型,对7~25 h建立菌体生长期动力学模型,对37~85 h建立产物合成期动力学模型。
菌体生长期动力学模型的建立
发酵过程中,西索米星产生菌的生长速率与发酵体系的温度、pH值、底物浓度、产物浓度和菌体浓度有关。在对数生长期,产物浓度未对菌体生长构成抑制作用,在建立本模型的实验底物浓度范围内(ρSf≤15.2 g/L),也未观察到可发酵糖底物对菌体生长的抑制效应。因此,在菌体生长期,当控制发酵温度34℃、pH值7.1时,菌体生长速率的数学模型可采用Monod方程表示:f在菌体对数生长期,西索米星产物尚未形成,此时底物的消耗主要用于菌体的生长和维持上。据物料平衡建立总糖消耗模型:-dρStdt=dρXYXdt+mρX。
发酵过程可发酵糖的变化量等于由淀粉水解酶降解作用所产生的可发酵糖减去菌体生长和维持所消耗的可发酵糖,所消耗的可发酵糖量等于所消耗的总糖量。发酵过程可发酵糖的物料衡算可表示为:dρSfdt=ESf-dρXYXdt+mρX⑶
本实验条件下,菌体生长期发酵液中可发酵糖的生成速率可表示为:ESf=-0.007 6t2+0.257 4t-1.314 7⑷因此,式⑴~式组成了菌体生长阶段的动力学模型。
模型的参数估算和适用性评价
在西索米星分批发酵过程,菌体生长期动力学模型中所有4个待定参数(μm、KS、YX和m)使用MathCAD进行最小二乘估计,目标函数J为3个状态变量(ρSt、ρSf和ρX)在发酵7~25 h内7个采样时刻的实验数据Yij和模型计算数据Zij的相对偏差平方。
采用MathCAD提供的最优化问题求解方法编程求解微分方程组,并进行待定参数的优化搜索,求得目标函数达最小值时的待定参数值。根据实验数据和上述模型最终求得菌体生长期目标函数值J为0.011,菌体生长期动力学模型参数的估计结果示于表1,分批发酵过程动力学模型预测值与实验数据拟合图所示。
为了考察不同总糖浓度下模型反映西索米星分批发酵状况的适用性,利用建立的动力学模型,对初始总糖浓度分别为70.0、60.0和50.0 g/L的分批发酵过程菌体生长期进行计算机仿真验证,结果显示,模型状态变量实验值与模拟值的相对偏差平方和均分别为2.3%、1.9%和5.8%。研究表明,该动力学模型能较好地描述和预测了初始总糖浓度为50.0~70.0 g/L的西索米星分批发酵过程菌体生长期的状况。
西索米星发酵是产物合成和菌体生长非耦联型,产物合成期维持高浓度的菌体对西索米星产物的合成有利。从所建立的动力学模型中可以发现,在发酵中菌体的生长需要消耗大量的糖类底物,以分批发酵过程中所能出现的最大菌体浓度11.2~11.8 g/L计,模型中YX为0.43 g/g,取具有统计意义的初始菌体浓度进行计算,则在达到最大菌体浓度前,理论上大约需要消耗15.9~17.3 g/L可发酵糖。但由于真实发酵过程存在着菌体的维持消耗等因素,实际所消耗的可发酵糖要大于此值。 1)当采用淀粉为主要碳源的天然培养基进行西索米星的分批发酵时,分别建立了菌体生长阶段和产物合成阶段的动力学模型。在菌体生长期,菌体生长速率的数学模型可采用Monod方程表示,在产物合成期,菌体生长速率符合Contois方程。西索米星的合成符合Luedeking-Piret方程,可采用Levenspiel方程对其进行修正。
2)分别对菌体生长阶段和产物合成阶段的动力学模型进行了模型参数的估计。菌体生长期动力学模型参数μm、KS、KX、m分别为:0.058 h-1、4.046 g/L、0.433 g/g、0.000 1 g/(g·h),拟合偏差平方和J为0·011;产物合成期动力学模型参数μm、KX、K2、N、YX、YP、m分别为:0.058 h-1、60.556 g/g、1.198 g/(g·h)、0.606、0.090 g/g、0.095 g/g、0.001 73 g/(g·h),拟合偏差平方和J为0.027。
3)所建立的动力学模型能较好地描述和预测初始总糖浓度为50.0~70.0 g/L的西索米星分批发酵过程,模型状态变量实验值与模拟值的相对偏差平方和均小于6%。该研究为西索米星分批发酵的过程优化及其控制提供了依据。4)采用高浓度的麦芽糖为补料液进行流加发酵的方式,能有效地减缓发酵中后期因淀粉水解酶表观活性不足所导致的可发酵糖浓度的下降,有助于大幅度提高西索米星的发酵水平。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!