9分之11怎么写
9分之11可以写成11/9,也可以写成一又十一分之二,是一个假分数,大于一。假分数就是分子比分母大的分数,可以分解成一个整数加上一个真分数,两者是一样的,只不过表达方式不同,如果写成小数大约是1.2222222……是一个无限循环小数
比较9分之10和11分之12大小的常见方法:
1通分9/10=45/60 11/12=55/60。可得9分之10<11分之12。
2同时乘以分母最小公倍数60,去分母9/10=45 11/12=55。可得9分之10<11分之12。
3化成小数 9/10=0·9 11/12=0·916666。可得9分之10<11分之12。
4把这两个数用1减,得1/10和1/12。可得9分之10<11分之12。
5 具体数值代之60的9/10和11/12比较。可得9分之10<11分之12。
比较分数大小的方法
对于分母或分子相同的分数,可根据同分母或同分子分数比较大小的方法进行比较;对于分母和分子都不相同的分数,通常是采用先通分再比较大小的方法。实际上,比较分数大小的方法有很多,同学们可根据要比较的分数的特点,选择适当的方法进行比较。下面就向同学们介绍几种比较分数大小的方法。
一、化同分子法
先把分子不同的两个分数化成分子相同的两个分数,然后再根据“分子相同的两个分数,分母小的分数比较大”进行比较。
二、化成小数法
先把两个分数化成小数,再进行比较。
三、搭桥法
在要比较的两个分数之间,找一个中间分数,根据这两个分数和中间分数的大小关系,比较这两个分数的大小。
四、差等规律法
根据“分子与分母的差相等的两个真分数,分子加分母得到的和较大的分数比较大;分子与分母的差相等的两个假分数,分子加分母得到的和较大的分数比较小”比较两个分数的大小。
五、交叉相乘法
把第一个分数的分子与第二个分数的分母相乘的积当作第一个分数的相对值;把第二个分数的分子与第一个分数的分母相乘的积当作第二个分数的相对值,相对值比较大的分数比较大。
六、比较倒数法
通过比较两个分数倒数的大小,比较两个分数的大小。倒数较小的分数,原分数较大;倒数较大的分数,原分数较小。
七、相除法
用第一个分数除以第二个分数,若商小于1,则第一个分数小;若商大于1,则第一个分数大;若商等于1,则两个分数相等。
八、化整法
将两个分数同时乘其中一个分数的分母,把其中一个分数化为整数,然后再进行比较。
九、约分法
在比较两个分数之前,先将两个分数约分,然后再进行比较。
鹏仔微信 15129739599 鹏仔QQ344225443 鹏仔前端 pjxi.com 共享博客 sharedbk.com
图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。如有恶意碰瓷者,必当奉陪到底严惩不贷!